

An Adjoint-Based Adaptive Approach to Mitigate Background Limitations in EnKFs

Hajoon Song¹, <u>Ibrahim Hoteit</u>², Bruce Cornuelle¹, Xiaodong Luo², and Aneesh Subramanian¹

Context

- EnKF background is limited by small ensembles and poorly known model errors
- Hybrid, inflation and localization methods are used as some kind of estimates of the background "null space", but do not improve ensemble "diversity"
- The idea here is try to improve the EnKF background by incorporating new ensemble members estimated from the null space, using 3D and 4D-VAR!

Outline

- Ensemble Kalman Filtering (EnKF)
 - Background limitations
- Methods to mitigate background limitations
 - Inflation, Hybrid, localization ...
- Adaptive EnKF (vs. Hybrid, and Inflation)
- Numerical Results

EnKF Algorithm

EnKF

Monte-Carlo Approach: Represents uncertainties by an ensemble of vectors

$$P = \frac{1}{N-1} \sum_{i} \left(\overline{x} - x^{i} \right) \left(\overline{x} - x^{i} \right)^{T}$$

- Update the ensemble instead of P:
 - Solves storage problem
 - Significantly reduces number of model integrations
 - Suitable for nonlinear systems
- Accurate description of P is critical (Lorenc 2003)!

EnKF Background Limitation

The accuracy of the background covariance matrix is mainly limited by:

"Small ensembles" & "Model deficiencies"

- Rank deficiency: not enough degrees of freedom to fit data
- Spurious correlations: unreliable statistics from small sample
- Underestimated background covariance (weak spread)

Inflation, Localization and Hybrid ...

The EnKF background is only an approximation of the 'true' uncertainties

$$\mathbf{P}^t = \mathbf{P} + \mathbf{B}$$

- Inflation, localization and hybrid (LIH) are all used to somehow represent estimates of B □can be simultaneously used!
- Hybrid: "Relax OI-/3D-VAR background to flow-dependent EnKF background

$$\tilde{\mathbf{P}}^t = \alpha \mathbf{P} + (1 - \alpha) \mathbf{B}$$

Additive Inflation: Add some perturbations to the members

Background Limitation - Geometric Interp.

EnKF solution is a linear combination of the ensemble members

KAUS King Abdullah Universi

Adaptive EnKF (AEnKF)

- If Pis not accurately estimated, the residuals are the result of missing directions in the ensemble
- Residuals carry information about EnKF background deficiency
- The idea is then to back-project the residuals from the observation space to the state space and use that as new member in the ensemble!

AEnKF

- Enrich the EnKF ensemble with new members estimated in the ensemble null space!
- To estimate the new members:

$$\mathbf{d} - \mathbf{H}\mathbf{x}^f = \mathbf{H}(\mathbf{x}^a - \mathbf{x}^f) + \mathbf{H}\delta\mathbf{x} + \mathbf{r}^e$$

which is equivalent to $d - Hx^a = H\delta x + r^e$

Consider it as an inverse problem with prior Band cov. obsR

$$J(\delta \mathbf{x}^e) = \frac{1}{2} \delta \mathbf{x}^{eT} \mathbf{B}^{-1} \delta \mathbf{x}^e + \frac{1}{2} (\mathbf{r} - \mathbf{H} \delta \mathbf{x}^e)^T \mathbf{R}^{-1} (\mathbf{r} - \mathbf{H} \delta \mathbf{x}^e)$$

A new member is then

$$\mathbf{x}^{a,e} = \mathbf{x}^a + \beta \delta \mathbf{x}^e$$

AEnKF

Another way to interpret it is to split the Kalman Gain into two parts:

$$\mathbf{K} = \mathbf{P}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{P}\mathbf{H}^{T} + \mathbf{R}^{e}\right)^{-1}$$
 $\mathbf{K}^{r} = \mathbf{B}\mathbf{H}^{T} \left(\mathbf{H}\mathbf{P}\mathbf{H}^{T} + \mathbf{H}\mathbf{B}\mathbf{H}^{T} + \mathbf{R}\right)^{-1}$

We use \mathbf{K} update the ensemble as in the regular EnKF, and we use $t\mathbf{K}^r$ stimate a new member.

We could use K^r for each member, as in LIH methods, so that same increments are added to all members. This would however increase correlations between members and does not improve "diversity".

KAUST King Abdullah University of Science and Technology

AEnKF – Real Life Interpretation

What are we looking for?

A "smart penguin" would lead the way ... Hajoon

KAUST King Abdullah University of Science and Technology

New member – Geometric Interp.

 $(\hat{\mathbf{x}} - \frac{1}{n}\mathbf{d}_k) + \frac{1}{n}\beta\delta\mathbf{x}$

- For practical reasons, we need to remove members from the ensemble
- We remove the members that distort the least the background distribution
- As for the weighting factor, here we do it by trial and error, but we can chose it according to some optimum criterion

Adaptive vs. Hybrid

- Adaptive limits growth of the ensemble to directions indicated by the residuals and not represented in the ensemble
- Adaptive easier to implement: the "two assimilation" systems are applied independently
- Technically speaking, adaptive does not increase the background rank

4D - AEnKF

 Use 4D-VAR formulation to reduce dependency on Bwhile including more information from dynamics and data

$$J_{4D}(\delta \mathbf{x}_{i-n}) = \frac{1}{2} \delta \mathbf{x}_{i-n}^T \mathbf{B}^{-1} \delta \mathbf{x}_{i-n}$$

$$+ \frac{1}{2} \sum_{j=i-n}^{i} \alpha_j (\mathbf{r}_j - \mathbf{G}_j \delta \mathbf{x}_{i-n})^T \mathbf{R}_j^{-1} (\mathbf{r}_j - \mathbf{G}_j \delta \mathbf{x}_{i-n})$$

- Amounts to integrate residuals backward in time with the adjoint!
- \triangleright A new member at time t_{i-n} is then

$$\mathbf{x}_{i-n}^{a,e} = \mathbf{x}_{i-n}^a + \beta \delta \mathbf{x}_{i-n}^e$$

which is next integrated forward to provide new member at t_i

KAUST King Abdullah University of Science and Technology

Generating More Members

- Random sampling from the estimated distribution of the new member
- Descent directions from optimizing the cost function

KAUST King Abdulab University of Science and Technology

Some Numerical Experiments

Lorenz 96 model as a testbed for ensemble methods

$$\frac{dx_{j}}{dt} = (x_{j+1} - x_{j-2})x_{j-1} - x_{j} + F$$

$$\begin{vmatrix} n = 40 \\ F = 8 \\ \Delta t = 0.05 \sim 6R$$

- First, long free-run
- Initial ensemble: mean of free-run + N(0,1)
- Bcovariance of free-run (Hamill and Snyder, 2000)
- Assimilation period: "reference" states from 1 year

- Observations from reference states every day (All, Half, Quarter)
- Model error: F = 8 in reference model and F = 6 in forecast
- Sampling errors: only 10 members were used
- We compared EnKF, 3D-VAR hybrid, AEnKF, and 4D-AEnKF

Averaged RMS

Length Scale

Length Scale

Length Scale

Averaged RMS (B = Identity)

19

Hybrid

(b) Hybrid, half

(c) Hybrid, quarter

AEnKF

(h) AEnKF, half

(i) AEnKF, quarter

4D-AEnKF

(e) AEnKF,adj, half

(f) AEnKF,adj, quarter

4D-AEnKF % number of backward steps

Discussion

- Combining the good features of EnKF and 4D-VAR could enhance performances
- This however requires implementing the two methods; quite demanding!
- Hybrid methods use EnKF to improve VAR background covariances (4D En-VAR). Here we use VAR to enrich EnKFsensembles (4D VAR-En) ...

Reference

H. Song, I. Hoteit, B. Cornuelle, and A. Subramanian: An adaptive approach to mitigate background covariance limitations in the ensemble Kalman filter. Monthly Weather Review, 138, 2825-2845, 2010.

THANK YOU